

Prompt Learning Meets Visual Context

Guangyi Chen 陈广义

https://chengy12.github.io/

Carnegie Mellon University, Pittsburgh PA, USA

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

Contrastive Vision Language Model

2

Recently, contrastive vision-language pre-trained models, which learn visual representation with natural language supervision, have achieved significant success.

Contrastive Vision Language Model

These vision language pretrained (VLP) models show promising generalization ability by explicitly leveraging the neural languages.

Illustration from CLIP (Radford et al., 2021)

Contrastive Vision Language Model

How to efficiently adapt the knowledge from pretraining to the downstream tasks is an important question, given these models are typical of massive sizes.

Illustration from Google AI Blog

Parameter-Efficient Fine-Tuning

Recently, many parameter-efficient finetuning methods have been proposed, including Adapter, Partial Finetuning, LoRA, and Prompt Learning.

Prompt Learning

> Prompt learning offers better interpretability because humans more easily understand textual tokens than model parameters.

Prompt Learning for VLP Models

- Build the template as: learnable prompts + classname
- > Fix the model parameters and learn the prompts with few-shot annotation

E.g. "A photo of a "

The Gap Across Modalities

The granularity of information in images and captions for contrastive pretraining is mismatched. Images contain more detailed visual contexts than the high-level overviews provided in captions.

The image contains detailed, fine-grained context.

The textural prompts are always coarse, high-level overviews.

How to bridge this gap and leverage visual context

Local Language Compatibility

Key findings: The local features extracted from the CLIP image encoder are language-compatible, enabling fine-grained local text-patch matching.

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting. Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, Jiwen Lu. CVPR, 2022.

PLOT: Prompt Learning with Optimal Transport for Vision-Language Models. Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, 9 Yongming Rao, Kun Zhang. ICLR, 2023. (Spotlight)

Prompt Learning for Dense Prediction

How to transfer the image-text matching pre-trained model to more complex dense prediction tasks, such as segmentation, and detection.

Pretraining with image-text matching task

Downstream dense prediction task

How to Use Local Matches

- > Compute the pixel-text score maps using local visual and textual embeddings
- > Apply pixel-text matching task as an auxiliary loss to refine features
- Concatenate the score maps as features to incorporate language priors

How to Learn Local Matches

- Finetune the image encoder for visual embeddings and learn prompts to refine textual embeddings
- > Involve visual contexts to refine text features with the cross-attention mechanism

Pre/Post Model Prompting

Two different strategies of context-aware prompting, pre/post text encoder
Post-model prompting is more effective and efficient

Post Model Context-aware prompting

Results on Semantic Segmentation

CLIP pre-train shows better performance than the ImageNet pre-train
DenseCLIP better utilizes CLIP's knowledge than direct finetuning

Backbone	Method	Pre-train	mIoU (SS)	mIoU (MS)	GFLOPs	Params (M
	FCN [30]	ImageNet	36.1	38.1	793.3	49.6
	EncNet [55]	ImageNet	40.1	41.7	565.6	36.1
	PSPNet [57]	ImageNet	41.1	41.9	716.2	49.1
	CCNet [20]	ImageNet	42.1	43.1	804.0	49.9
ResNet-50	DeeplabV3+[7]	ImageNet	42.7	43.8	711.5	43.7
Resivet-30	UperNet [45]	ImageNet	42.1	42.8	953.2	66.5
	DNL [52]	ImageNet	41.9	43.0	939.3	50.
	Semantic FPN [21]	ImageNet	38.6	40.6	227.1	31.0
	CLIP + Semantic FPN	CLIP	39.6	41.6	248.8	31.0
	DenseCLIP + Semantic FPN	CLIP	43.5	44.7	269.2	50
	FCN [30]	ImageNet	39.9	41.4	1104.4	68.0
	EncNet [55]	ImageNet	42.6	44.7	876.8	55.
	PSPNet [57]	ImageNet	43.6	44.4	1027.4	68.
	CCNet [20]	ImageNet	44.0	45.2	1115.2	68.9
	DeeplabV3+ [7]	ImageNet	44.6	46.1	1022.7	62.7
ResNet-101	UperNet [45]	ImageNet	43.8	44.8	1031.0	85.:
	OCRNet [54]	ImageNet	45.3	-	923.9	55.:
	DNL [52]	ImageNet	44.3	45.8	1250.5	69.
	Semantic FPN [21]	ImageNet	40.4	42.3	304.9	50.0
	CLIP + Semantic FPN	CLIP	42.7	44.3	326.6	50.0
	DenseCLIP + Semantic FPN	CLIP	45.1	46.5	346.3	67.
	SETR-MLA-DeiT [58]	ImageNet	46.2	47.7	-	
	Semantic FPN [21]	ImageNet	48.3	50.9	1037.4	100.3
ViT-B	Semantic FPN [21]	ImageNet-21K	49 1	50.4	1037 4	100 9
	CLIP + Semantic FPN	CLIP	49.4	50.3	1037.4	100.8
	DenseCLIP + Semantic FPN	CLIP	50.6	51.3	1043.1	105.3

More Experimental Analysis

DenseCLIP can be applied for other dense prediction tasks, such as detection and instance segmentation, other base backbones, and other pre-trained datasets.

Model	FLOPs (G)	Params (M)	APb	$\mathrm{AP}^\mathrm{b}_{50}$	$\mathrm{AP}^\mathrm{b}_{75}$	$\operatorname{AP}^{\operatorname{b}}_S$	$\operatorname{AP}^{\mathrm{b}}_M$	$AP_L^{\rm b} AP^{\rm m}$	$AP_{50}^{\rm m}$	AP_{75}^{m}	$\operatorname{AP}^{\mathrm{m}}_S$	$\operatorname{AP}_M^{\mathrm{m}}$	AP_L^m
RN50-IN1K [18]	275	44				21.9		49.5 34.7				37.4	47.2
RN50-CLIP [33] RN50-DenseCLIP	301 327	44 67	39.3 40.2	61.3 63.2				50.1 36.8 51.0 37.6					51.8 53.7
KNJ0-DeliseCLIF	527	07	40.2	03.2	43.9	20.3	44.2	51.0 57.0	00.2	39.0	20.0	40.7	55.7
RN101-IN1K [18]	351	63	40.0	60.5	44.0	22.6	44.0	52.6 36.1	57.5	38.6	18.8	39.7	49.5
RN101-CLIP [33]	377	63	42.2	64.2	46.5	26.4	46.1	54.0 38.9	61.4	41.8	20.5	42.3	55.1
RN101-DenseCLIP	399	84	42.6	65.1	46.5	27.7	46.5	54.2 39.6	62.4	42.4	21.4	43.0	56.2

Decoder	Method	mIoU (SS) (%)	mIoU (MS) (%)
Semantic	RN50 [18]	38.6	40.6
	RN50 + DenseCLIP	41.0 (+2.4)	43.0 (+2.4)
FPN [21]	RN101 [18]	40.4	42.3
	RN101 + DenseCLIP	43.0 _(+2.6)	45.2 _(+2.9)
UperNet [45]	Swin-T [29]	44.5	45.8
	Swin-T + DenseCLIP	45.4 _(+0.9)	46.5 (+0.7)
openiet [+5]	Swin-S [29]	47.6	49.5
	Swin-S + DenseCLIP	48.3 (+0.7)	49.7 (+0.2)

PLOT: Learning Multiple Prompts

Learning one sentence is intuitively insufficient to describe a class.
One class can be described by many intrinsic characteristics and even extrinsic context relations.

Brambling

Key Idea

- How about directly learning multiple prompts? (even adding some constraints to push away the prompt from each other)
- > The key idea is to use different local features to guide different prompts
- > Formulate it as a set-to-set matching problem and use Optimal Transport to solve

Optimal Transport (OT)

The role of OT: minimize the cost when moving several items simultaneously.
Extended role: compare two distributions given the cost function.

$$D_{OT}(U,V) = \inf_{\Gamma} \int_{\mathcal{X} \times \mathcal{Y}} C(x,y) d_{\gamma}(x,y)$$

Optimal Transport (OT)

 \succ Here, we assume U, V are two discrete distributions (feature sets)

$$U = \sum_{m=1}^{M} \mu_m \,\delta_{f_m} \quad , \qquad V = \sum_{n=1}^{N} \nu_n \delta_{g_n}$$

> The cost function is defined by the distance between visual and textual features.

 $\boldsymbol{C}_{m,n} = 1 - \sin\left(\boldsymbol{f}_m, \boldsymbol{g}_n\right)$

 \succ Optimal transport plan T is to minimize the total distance of two distributions (U, V)

$$d_{OT}(U, V | \mathbf{C}) = \min_{\substack{\Gamma \\ \Gamma \\ V}} \sum_{\substack{n=1 \\ X \times Y \\ M}} \sum_{\substack{n=1 \\ Y \times Y \\ N}} T_{m,n} \mathbf{C}_{m,n} \mathbf{C}_{m,n}$$

s.t. $T\mathbf{1}_{N} = \mu, T^{T} \mathbf{1}_{M}^{X \times Y} = \nu, T \in \mathbb{R}^{M \times N}_{+}$

> We apply the Sinkhorn algorithm (Curuti, 2013) for fast optimization

Overall Framework

- > Initialize multiple prompts and obtain the local feature sets
- Calculate the set-to-set distance between feature sets of prompts and visual patches using Optimal Transport.
- > Two-stage optimization for learning optimal transport and prompts

When Local Matching Fails

The success relies on effective language-compatible local features.
What would happen if local matching fails, such as in ViT?

Raw image

Raw image

Brambling

ViT-B/16

Rooster

RN50

RN50

ViT-B/16

ImageNet Accuracy

When Local Matching Fails (PLOT++)

Jointly learning multiple visual and textual prompts, by guidance from each other.
How do we get the starting point of this refinement?

[] exhibits a range of[] is in the image

[] is a real-world object[] exists in real-word scenario

Generate the shared templates without knowing all class knowledge.

- Commonality
- Obviousness
- Diversity
- Brevity

What Can PLOT Learn

We provide the heatmaps of transport plan related to each prompt on 4 classes in ImageNet. Different transport plans focus on different attributes.

Wings Environment

What Can PLOT Learn

> We show the nearest words for 16 context vectors of all 4 prompts learned by PLOT.

		Number	Prompt 1	Prompt 2	Prompt 3	Prompt 4
		1	ag	pa	trying	gaz
The all of		2	flint leaving	as wit	field N/A	white
Ť	*	4	sot	1	icons	ario
	A Longitude	5	tint	N/A	eclub	safe
		6	tar	yl	indiffe	class
		7	attn	N/A	ts	represented
		8	2	job	cold	attend
		9	rollingstones	built	yeah	vie
		10	N/A	brought	band	recognized
		11	N/A	or	love	old
		12	bel	j	late	stel
		13	head	ag	industry	awhile
		14	artifact	bad	N/A	ded
		15	an	chie	across	these
1 Mile	1 Alexandre	16	5	in	actual	visiting

What Can PLOT++ Learn

We provide the heatmaps of transport plans related to each prompt. The refined local visual features are more complementary and meaningful.

PLOT-VIT-B/16

PLOT++

Experiments on 11 Datasets

StanfordCars

FGVCAircraft

Caltech101

SUN397

Food101

OxfordPets

DTD

EuroSAT

Flowers102

UCF101

Few-shot Learning Results

27

Few-shot Learning Results of PLOT++

28

MOHAMED BIN ZAYED

RTIFICIAL INTELLIGENCE

VERSITY OF

> 4.5% 1-shot performance improvement over CoOp (Zhou et al. 2021) and CoCoOp (Zhou et al. 2022)

> We conducted the ablation studies on three datasets.

Dataset	Settings	1 shot	2 shots	4 shots	8 shots	16 shots
	PLOT	89.83 ± 0.33	90.67 ± 0.21	90.80 ± 0.20	91.54 ± 0.33	92.24 ± 0.38
	CoOp	87.51 ± 1.02	87.84 ± 1.10	89.52 ± 0.80	90.28 ± 0.42	91.99 ± 0.31
Caltech101	G	88.13 ± 0.36	86.98 ± 1.25	88.45 ± 0.79	90.16 ± 0.22	90.72 ± 0.18
Cancentor	G+V	88.28 ± 0.43	87.72 ± 1.25	88.45 ± 0.30	89.82 ± 0.20	92.00 ± 0.13
	Μ	69.78 ± 1.75	71.57 ± 1.59	77.18 ± 2.16	81.77 ± 0.47	86.21 ± 0.20
	M+V	66.11 ± 8.29	71.45 ± 3.98	79.30 ± 3.96	86.96 ± 0.78	89.80 ± 0.17
	PLOT	46.55 ± 2.62	51.24 ± 1.95	56.03 ± 0.43	61.70 ± 0.35	65.60 ± 0.82
	CoOp	43.62 ± 1.96	45.35 ± 0.31	53.94 ± 1.37	59.69 ± 0.13	62.51 ± 0.25
DTD	G	45.12 ± 1.69	48.39 ± 2.08	54.75 ± 0.48	60.15 ± 0.70	63.59 ± 0.76
DID	G+V	45.90 ± 2.00	48.50 ± 0.99	53.96 ± 0.48	59.69 ± 1.01	63.51 ± 0.66
	Μ	13.18 ± 4.57	12.25 ± 3.86	13.00 ± 4.73	20.76 ± 5.42	26.99 ± 1.98
	M+V	12.61 ± 5.93	15.11 ± 1.81	20.35 ± 1.33	44.13 ± 2.39	56.85 ± 0.54
	PLOT	77.74 ± 0.47	77.70 ± 0.02	77.21 ± 0.43	$\textbf{75.31} \pm \textbf{0.30}$	77.09 ± 0.18
	CoOp	74.25 ± 1.52	72.61 ± 1.33	73.49 ± 2.03	71.58 ± 0.79	74.48 ± 0.15
FOOD101	G	74.63 ± 0.11	70.15 ± 0.49	70.41 ± 0.46	70.72 ± 0.98	73.68 ± 0.46
1000101	G+V	74.83 ± 0.31	70.09 ± 0.85	70.86 ± 0.22	70.80 ± 0.68	73.93 ± 0.35
	Μ	52.02 ± 4.86	46.12 ± 1.46	46.86 ± 1.39	53.43 ± 0.88	61.28 ± 0.23
	M+V	46.52 ± 1.15	45.95 ± 2.66	53.57 ± 0.83	62.95 ± 0.37	67.63 ± 1.11

Q: Can we directly learn multiple prompts by matching it with the global visual feature? A: No.

Dataset	Settings	1 shot	2 shots	4 shots	8 shots	16 shots
	PLOT	89.83 ± 0.33	90.67 ± 0.21	90.80 ± 0.20	91.54 ± 0.33	92.24 ± 0.38
	CoOp	87.51 ± 1.02	87.84 ± 1.10	89.52 ± 0.80	90.28 ± 0.42	91.99 ± 0.31
Caltech101	G	88.13 ± 0.36	86.98 ± 1.25	88.45 ± 0.79	90.16 ± 0.22	90.72 ± 0.18
Calleen101	G+V	88.28 ± 0.43	87.72 ± 1.25	88.45 ± 0.30	89.82 ± 0.20	92.00 ± 0.13
	Μ	69.78 ± 1.75	71.57 ± 1.59	77.18 ± 2.16	81.77 ± 0.47	86.21 ± 0.20
	M+V	66.11 ± 8.29	71.45 ± 3.98	79.30 ± 3.96	86.96 ± 0.78	89.80 ± 0.17
	PLOT	46.55 ± 2.62	51.24 ± 1.95	56.03 ± 0.43	61.70 ± 0.35	65.60 ± 0.82
	CoOp	43.62 ± 1.96	45.35 ± 0.31	53.94 ± 1.37	59.69 ± 0.13	62.51 ± 0.25
DTD	G	45.12 ± 1.69	48.39 ± 2.08	54.75 ± 0.48	60.15 ± 0.70	63.59 ± 0.76
DID	G+V	45.90 ± 2.00	48.50 ± 0.99	53.96 ± 0.48	59.69 ± 1.01	63.51 ± 0.66
	Μ	13.18 ± 4.57	12.25 ± 3.86	13.00 ± 4.73	20.76 ± 5.42	26.99 ± 1.98
	M+V	12.61 ± 5.93	15.11 ± 1.81	20.35 ± 1.33	44.13 ± 2.39	56.85 ± 0.54
	PLOT	77.74 ± 0.47	77.70 ± 0.02	$\textbf{77.21} \pm \textbf{0.43}$	75.31 ± 0.30	77.09 ± 0.18
	CoOp	74.25 ± 1.52	72.61 ± 1.33	73.49 ± 2.03	71.58 ± 0.79	74.48 ± 0.15
FOOD101	G	74.63 ± 0.11	70.15 ± 0.49	70.41 ± 0.46	70.72 ± 0.98	73.68 ± 0.46
1.000101	G+V	74.83 ± 0.31	70.09 ± 0.85	70.86 ± 0.22	70.80 ± 0.68	73.93 ± 0.35
	Μ	52.02 ± 4.86	46.12 ± 1.46	46.86 ± 1.39	53.43 ± 0.88	61.28 ± 0.23
	M+V	46.52 ± 1.15	45.95 ± 2.66	53.57 ± 0.83	62.95 ± 0.37	67.63 ± 1.11

> Q: Can methods that encourage the variety of prompts work well? A: **Not** really.

Dataset	Settings	1 shot	2 shots	4 shots	8 shots	16 shots
	PLOT	89.83 ± 0.33	90.67 ± 0.21	90.80 ± 0.20	91.54 ± 0.33	92.24 ± 0.38
	CoOp	87.51 ± 1.02	87.84 ± 1.10	89.52 ± 0.80	90.28 ± 0.42	91.99 ± 0.31
Caltech101	G	88.13 ± 0.36	86.98 ± 1.25	88.45 ± 0.79	90.16 ± 0.22	90.72 ± 0.18
Calcellioi	G+V	88.28 ± 0.43	87.72 ± 1.25	88.45 ± 0.30	89.82 ± 0.20	92.00 ± 0.13
	Μ	69.78 ± 1.75	71.57 ± 1.59	77.18 ± 2.16	81.77 ± 0.47	86.21 ± 0.20
	M+V	66.11 ± 8.29	71.45 ± 3.98	79.30 ± 3.96	86.96 ± 0.78	89.80 ± 0.17
	PLOT	46.55 ± 2.62	51.24 ± 1.95	56.03 ± 0.43	61.70 ± 0.35	65.60 ± 0.82
	CoOp	43.62 ± 1.96	45.35 ± 0.31	53.94 ± 1.37	59.69 ± 0.13	62.51 ± 0.25
DTD	G	45.12 ± 1.69	48.39 ± 2.08	54.75 ± 0.48	60.15 ± 0.70	63.59 ± 0.76
DID	G+V	45.90 ± 2.00	48.50 ± 0.99	53.96 ± 0.48	59.69 ± 1.01	63.51 ± 0.66
	Μ	13.18 ± 4.57	12.25 ± 3.86	13.00 ± 4.73	20.76 ± 5.42	26.99 ± 1.98
	M+V	12.61 ± 5.93	15.11 ± 1.81	20.35 ± 1.33	44.13 ± 2.39	56.85 ± 0.54
	PLOT	77.74 ± 0.47	77.70 ± 0.02	$\textbf{77.21} \pm \textbf{0.43}$	$\textbf{75.31} \pm \textbf{0.30}$	77.09 ± 0.18
	CoOp	74.25 ± 1.52	72.61 ± 1.33	73.49 ± 2.03	71.58 ± 0.79	74.48 ± 0.15
FOOD101	G	74.63 ± 0.11	70.15 ± 0.49	70.41 ± 0.46	70.72 ± 0.98	73.68 ± 0.46
1000101	G+V	74.83 ± 0.31	70.09 ± 0.85	70.86 ± 0.22	70.80 ± 0.68	73.93 ± 0.35
	Μ	52.02 ± 4.86	46.12 ± 1.46	46.86 ± 1.39	53.43 ± 0.88	61.28 ± 0.23
	M+V	46.52 ± 1.15	45.95 ± 2.66	53.57 ± 0.83	62.95 ± 0.37	67.63 ± 1.11

> Q: Does the improvement mainly come from using all local feature maps? A: No.

Dataset	Settings	1 shot	2 shots	4 shots	8 shots	16 shots
	PLOT	89.83 ± 0.33	90.67 ± 0.21	90.80 ± 0.20	91.54 ± 0.33	92.24 ± 0.38
	CoOp	87.51 ± 1.02	87.84 ± 1.10	89.52 ± 0.80	90.28 ± 0.42	91.99 ± 0.31
Caltech101	G	88.13 ± 0.36	86.98 ± 1.25	88.45 ± 0.79	90.16 ± 0.22	90.72 ± 0.18
Calleen101	G+V	88.28 ± 0.43	87.72 ± 1.25	88.45 ± 0.30	89.82 ± 0.20	92.00 ± 0.13
	Μ	69.78 ± 1.75	71.57 ± 1.59	77.18 ± 2.16	81.77 ± 0.47	86.21 ± 0.20
	M+V	66.11 ± 8.29	71.45 ± 3.98	79.30 ± 3.96	86.96 ± 0.78	89.80 ± 0.17
	PLOT	46.55 ± 2.62	51.24 ± 1.95	56.03 ± 0.43	61.70 ± 0.35	65.60 ± 0.82
	CoOp	43.62 ± 1.96	45.35 ± 0.31	53.94 ± 1.37	59.69 ± 0.13	62.51 ± 0.25
DTD	G	45.12 ± 1.69	48.39 ± 2.08	54.75 ± 0.48	60.15 ± 0.70	63.59 ± 0.76
DID	G+V	45.90 ± 2.00	48.50 ± 0.99	53.96 ± 0.48	59.69 ± 1.01	63.51 ± 0.66
	Μ	13.18 ± 4.57	12.25 ± 3.86	13.00 ± 4.73	20.76 ± 5.42	26.99 ± 1.98
	M+V	12.61 ± 5.93	15.11 ± 1.81	20.35 ± 1.33	44.13 ± 2.39	56.85 ± 0.54
	PLOT	77.74 ± 0.47	77.70 ± 0.02	$\textbf{77.21} \pm \textbf{0.43}$	$\textbf{75.31} \pm \textbf{0.30}$	77.09 ± 0.18
	CoOp	74.25 ± 1.52	72.61 ± 1.33	73.49 ± 2.03	71.58 ± 0.79	74.48 ± 0.15
FOOD101	G	74.63 ± 0.11	70.15 ± 0.49	70.41 ± 0.46	70.72 ± 0.98	73.68 ± 0.46
FOODIOI	G+V	74.83 ± 0.31	70.09 ± 0.85	70.86 ± 0.22	70.80 ± 0.68	73.93 ± 0.35
	Μ	52.02 ± 4.86	46.12 ± 1.46	46.86 ± 1.39	53.43 ± 0.88	61.28 ± 0.23
	M+V	46.52 ± 1.15	45.95 ± 2.66	53.57 ± 0.83	62.95 ± 0.37	67.63 ± 1.11

Application on Adapter

Q: Can PLOT benefit Adapter-based methods? A: Yes.

Computation Cost

Q: What is the extra computation time cost of PLOT over CoOp baseline? A: Around 10% inference speed and 5% training time.

Settings	CoOp	plot (N=1)	plot (N=2)	$\textbf{plot} (N=\!\!4)$	plot $(N=8)$
Training Time (s)	1.127	1.135	1.148	1.182	1.267
Inference Time (images/s)	719.1	714.4	690.7	653.0	519.8

	CoOp	CoCoOp	MaPLe	PLOT	PLOT++
Model Size	8.2k	41.5k	3,555.1k	32.8k	14.3k

Takeaway Points

- ➤ 1) There are gaps in information granularity between image contexts and text captions in current contrastive vision-language pre-trained models.
- > 2) Good finding: For CLIP, the local visual features are language-compatible.
- ➤ 3) This property can help prompt learning, such as learning prompts for dense prediction, and learning multiple comprehensive prompts.
- ➤ 4) However, in ViT-based CLIP models, local visual features are not sufficiently language-compatible. In such cases, it becomes beneficial to jointly refine both prompts and visual features.

Thanks for your listening