

Prompt Learning Meets Visual Context

Guangyi Chen 陈广义

https://chengy12.github.io/

Carnegie Mellon University, Pittsburgh PA, USA

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

Contrastive Vision Language Model

 \triangleright Recently, contrastive vision-language pre-trained models, which learn visual representation with natural language supervision, have achieved significant success.

Contrastive Vision Language Model

 \triangleright These vision language pretrained (VLP) models show promising generalization ability by explicitly leveraging the neural languages.

Contrastive Vision Language Model

 \triangleright How to efficiently adapt the knowledge from pretraining to the downstream tasks is an important question, given these models are typical of massive sizes.

Illustration from Google AI Blog

Parameter-Efficient Fine-Tuning

 \triangleright Recently, many parameter-efficient finetuning methods have been proposed, including Adapter, Partial Finetuning, LoRA, and Prompt Learning.

Prompt Learning

 \triangleright Prompt learning offers better interpretability because humans more easily understand textual tokens than model parameters.

Prompt Learning for VLP Models

- \triangleright Build the template as: learnable prompts + classname
- \triangleright Fix the model parameters and learn the prompts with few-shot annotation

E.g. "A photo of a "

The Gap Across Modalities

 \triangleright The granularity of information in images and captions for contrastive pretraining is mismatched. Images contain more detailed visual contexts than the high-level overviews provided in captions.

The image contains detailed, fine-grained context.

The textural prompts are always coarse, high-level overviews.

How to bridge this gap and leverage visual context

Local Language Compatibility

Ø**Key findings**: The local features extracted from the CLIP image encoder are language-compatible, enabling fine-grained local text-patch matching.

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting. Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, Jiwen Lu. CVPR, 2022.

PLOT: Prompt Learning with Optimal Transport for Vision-Language Models. Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, Kun Zhang. ICLR, 2023. (Spotlight) 9

Prompt Learning for Dense Prediction

 \triangleright How to transfer the image-text matching pre-trained model to more complex dense prediction tasks, such as segmentation, and detection.

Pretraining with image-text matching task

Downstream dense prediction task

How to Use Local Matches

- \triangleright Compute the pixel-text score maps using local visual and textual embeddings
- \triangleright Apply pixel-text matching task as an auxiliary loss to refine features
- \triangleright Concatenate the score maps as features to incorporate language priors

How to Learn Local Matches

- \triangleright Finetune the image encoder for visual embeddings and learn prompts to refine textual embeddings
- \triangleright Involve visual contexts to refine text features with the cross-attention mechanism

Pre/Post Model Prompting

ØTwo different strategies of context-aware prompting, pre/post text encoder \triangleright Post-model prompting is more effective and efficient

Post Model Context-aware prompting

Results on Semantic Segmentation

 \triangleright CLIP pre-train shows better performance than the ImageNet pre-train \triangleright DenseCLIP better utilizes CLIP's knowledge than direct finetuning

More Experimental Analysis

 \triangleright DenseCLIP can be applied for other dense prediction tasks, such as detection and instance segmentation, other base backbones, and other pre-trained datasets.

PLOT: Learning Multiple Prompts

ØLearning one sentence is intuitively insufficient to describe a class. \triangleright One class can be described by many intrinsic characteristics and even extrinsic context relations.

Brambling

Key Idea

- \triangleright How about directly learning multiple prompts? (even adding some constraints to push away the prompt from each other)
- \triangleright The key idea is to use different local features to guide different prompts
- ØFormulate it as a set-to-set matching problem and use Optimal Transport to solve

Optimal Transport (OT)

 \triangleright The role of OT: minimize the cost when moving several items simultaneously. \triangleright Extended role: compare two distributions given the cost function.

$$
D_{OT}(U,V) = \inf_{\Gamma} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{C}(x,y) d_{\gamma}(x,y)
$$

Optimal Transport (OT)

 \triangleright Here, we assume U, V are two discrete distributions (feature sets)

$$
U = \sum_{m=1}^{M} \mu_m \delta_{f_m} , \qquad V = \sum_{n=1}^{N} \nu_n \delta_{g_n}
$$

 \triangleright The cost function is defined by the distance between visual and textual features.

 $\mathcal{C}_{m,n} = 1 - \text{sim} (f_m, g_n)$

 \triangleright Optimal transport plan T is to minimize the total distance of two distributions (U, V)

$$
d_{OT}(U, V | C) = \min_{\Gamma} \sum_{m=1}^{M} \sum_{n=1}^{N} T_{m,n} C_{m,n}
$$

s.t.
$$
T1_N = \mu, T^T 1_M^{\chi \times \frac{N}{2}} \nu, T \in \mathbb{R}_+^{M \times N}
$$

 \triangleright We apply the Sinkhorn algorithm (Curuti, 2013) for fast optimization

Overall Framework

- \triangleright Initialize multiple prompts and obtain the local feature sets
- \triangleright Calculate the set-to-set distance between feature sets of prompts and visual patches using Optimal Transport.
- \triangleright Two-stage optimization for learning optimal transport and prompts

When Local Matching Fails

 \triangleright The success relies on effective language-compatible local features. \triangleright What would happen if local matching fails, such as in ViT?

Raw image

Raw image

Brambling

 $ViT-B/16$

Rooster

RN50

RN50

 $ViT-B/16$

ImageNet Accuracy

When Local Matching Fails (PLOT++)

 \triangleright Jointly learning multiple visual and textual prompts, by guidance from each other. \triangleright How do we get the starting point of this refinement?

[] exhibits a range of [] is in the image …

[] is a real-world object [] exists in real-word scenario

Generate the shared templates without knowing all class knowledge.

- \triangleright Commonality
- \triangleright Obviousness
- \triangleright Diversity
- \triangleright Brevity

What Can PLOT Learn

 \triangleright We provide the heatmaps of transport plan related to each prompt on 4 classes in ImageNet. Different transport plans focus on different attributes.

What Can PLOT Learn

ØWe show the nearest words for 16 context vectors of all 4 prompts learned by PLOT.

What Can PLOT++ Learn

 \triangleright We provide the heatmaps of transport plans related to each prompt. The refined local visual features are more complementary and meaningful.

PLOT-VIT-B/16

PLOT++

Experiments on 11 Datasets

StanfordCars

FGVCAircraft

Caltech101

SUN397

Food101

OxfordPets

DTD

EuroSAT

Flowers102

UCF101

ImageNet

Few-shot Learning Results

Ours $-$

 \rightarrow CoOp

 \bullet Ours

 \leftarrow CoOp

 \rightarrow Ours

 \rightarrow CoCoOp

- Linear Probe

 \rightarrow CoCoOp

- Linear Probe

 \rightarrow CoCoOp

- Linear Probe

า๋ธ

 16

27

 16

Few-shot Learning Results of PLOT++

28

MOHAMED BIN ZAYED VERSITY OF

RTIFICIAL INTELLIGENCE

 $> 4.5\%$ 1-shot performance improvement over CoOp (Zhou et al. 2021) and CoCoOp (Zhou et al. 2022)

\triangleright We conducted the ablation studies on three datasets.

\triangleright Q: Can we directly learn multiple prompts by matching it with the global visual feature? A: **No**.

ØQ: Can methods that encourage the variety of prompts work well? A: **Not** really.

ØQ: Does the improvement mainly come from using all local feature maps? A: **No**.

Application on Adapter

ØQ: Can PLOT benefit Adapter-based methods? A: **Yes**.

Computation Cost

ØQ: What is the extra computation time cost of PLOT over CoOp baseline? A: Around **10%** inference speed and **5%** training time.

Takeaway Points

- ≥ 1) There are gaps in information granularity between image contexts and text captions in current contrastive vision-language pre-trained models.
- \geq 2) Good finding: For CLIP, the local visual features are language-compatible.
- \geq 3) This property can help prompt learning, such as learning prompts for dense prediction, and learning multiple comprehensive prompts.
- \geq 4) However, in ViT-based CLIP models, local visual features are not sufficiently language-compatible. In such cases, it becomes beneficial to jointly refine both prompts and visual features.

Thanks for your listening